تاریخچه علم ریاضیات (قسمت ۱)

تاریخچه علم ریاضیات (قسمت ۱)

تاریخچه ریاضی از این قرار است که انسانهای اولیه نسبت به اعداد بیگانه بودند و شمارش اشیاء اطراف خود را به حسب غریزه انجام می دادند. اما به زودی مجبور شدند وسیله شمارش دقیق تری بوجود آورند و در زندگیشان استفاده کنند, بنابراین با كمك انگشتان دست دستگاه شماری پدید آوردند كه مبنای آن ۶۰ بود.این دستگاه شمار كه بسیار پیچیده است قدیمی ترین دستگاه شماری است كه آثاری از آن در كهن ترین مدارك موجود یعنی نوشته های سومری مشاهده می شود.

سه قرن اول ریاضیات یونانی که با تلاشهای اولیه در هندسه برهانی بوسیله تالس در حدود ۶۰۰ سال قبل از میلاد شروع شده و با کتاب برجسته اصول اقلیدس در حدود ۳۰۰ سال قبل از میلاد به اوج رسید، دوره‌ای از دستاوردهای خارق العاده را در ریاضی تشکیل می‌دهد.

ظهور و نقش افلاطون در تولید علم ریاضی

افلاطون در آتن یا حوالی آن و در سال ۴۲۷ (م) به دنیا آمد، افلاطون فلسفه را در آنجا زیر نظر سقراط خواند و سپس در پی کسب حکم عازم سیر و سفرهای طولانی شد. وی بدین ترتیب ریاضی را زیر نظر تیودوروس در ساحل آفریقا تحصیل کرد. افلاطون در بازگشت به آتن در حدود سال ۳۸۷(ق.م) آکادمی معروف خود را تاسیس کرد.

با توجه به تاریخچه ریاضی می توان گفت که تقریبا تمام کارهای مهم ریاضی در قرن چهارم بوسیله دوستان یا شاگردان افلاطون انجام شده بود. آکادمی افلاطون به عنوان حلقه ارتباط ریاضیات فیثاغورثیان اولیه و ریاضیات اسکندریه در آمد. تاثیر افلاطون بر علم ریاضی، معلول هیچ یک از کشفیات ریاضی وی نبود، بلکه به خاطر این بود که مطالعه ریاضیات عالیترین زمینه را برای تعلیم ذهن فراهم می‌آورد و از این رو در پرورش فیلسوفان و کسانی که می‌بایست دولت آرمانی را اداره کنند، نقش اساسی داشت.

این اعتقاد، شعار معروف او را بر سر در آکادمی وی توجیه می‌کند: “کسی که هندسه نمی‌داند، داخل نشود.” بنابراین به دلیل رکن منطقی و نحوه برخورد ذهنی نابی که تصور می‌کرد مطالعه ریاضیات در شخص ایجاد می‌کند، ریاضیات به نظر افلاطون از بیشترین اهمیت برخوردار بود، و به همین جهت بود که جای پر ارزش را در برنامه درس آکادمی اشغال می‌کرد.

در مورد ریاضیات بابلیان , یونان باستان , ایران و… بیشتر بدانید

تاریخچه اعداد طبیعی در ریاضی

استخوان ها و تکه چوبهای قدیمی یافت شده که روی آنها شیارهایی وجود دارد, دانشمندان معتقدند این شیارها نماد نخستین استفاده ی بشر از اعداد هستند و میتواند نشانگر تعداد روزهای سپری شده یا تعداد دام های بشر اولیه باشد.

این سیستم نمایش اعداد که “سیستم چوب خط” نامیده می شود (مثل خطوطی که زندانیان در فیلم ها برای روزهای سپری شده در زندان روی دیوار می کشند) نشانگر اعداد طبیعی است ({۱و۲و۳و…}). سیستم چوب خط دارای مفهوم “ارزش مکانی” نیست (مثل جایگاه دهگان، صدگان، هزارگان در سیستم با مبنای ده) و به همین خاطر دارای محدودیت نمایش اعداد بزرگ است.

تاریخچه اعداد حسابی در علم ریاضی

اعداد حسابی در ریاضی همان مجموعه‌ی اعداد طبیعی به اضافه ی عدد صفر است ({۰و۱و۲و…}) در نتیجه تاریخچه اعداد حسابی در واقع همان تاریخچه ی عدد صفر می باشد. اولین استفاده از صفر به عنوان عدد در ریاضی به استفاده از آن در “سیستم نمایش اعداد با ارزش مکانی” به عنوان “مکان نگه دار” برمی گردد.

به طور مثال در سیستم با مبنای ده، تفاوت عدد یک با عدد ده تنها در یک صفر است. در واقع عدد صفر اینجا نقش مکان نگه دار را دارد یعنی مکان یکان را برای عدد ده نگه داشته است تا عدد یک نقش دهگان را داشته باشد. در بررسی تاریخچه ریاضیات باید گفت بابلیان، مصریان و هندیان در متون خود از عدد صفر استفاده کرده اند. همچنین اسناد بجا مانده نشان می دهد که مایاها (قوم مایا در قاره امریکا) نیز از عدد صفر استفاده می کرده‌اند.

یونانیان باستان در مورد استفاده از صفر به عنوان یک عدد دچار شک بوده اند. آنها از خود می پرسیده اند “چگونه هیچ چیز می تواند چیزی باشد؟” که منظور از “هیچ چیز” همان صفر به مفهوم هیچ، عدم وجود یا خلا است. این سوال بحث های فلسفی جالبی را در آن زمان به راه انداخت.

تاریخچه اعداد صحیح ریاضی

برای بررسی تاریخچه اعداد صحیح ({…و-۲و-۱و۰و۱و۲و…}) باید به تاریخچه اعداد منفی بپردازیم. نخستین ظهور اعداد منفی در ریاضی به پنجاه تا صد سال قبل از میلاد و به سرزمین چین باز می گردد. در کتاب “نه فصل درباره ی هنر ریاضی” که جزو قدیمی ترین کتب چینی در زمینه ی ریاضیات است از اعداد منفی در محاسبه ی مساحت شکل های هندسی استفاده شده است.

دیوفانت اسکندرانی” ریاضیدان یونانی اولین دانشمند غربی بود که در قرن سوم میلادی و در حل معادلات درجه یک، به اعداد منفی برخورد کرد اما آن را غیرمعقول و مضحک توصیف کرد. هندی ها در قرن ششم از اعداد منفی در ریاضی برای نمایش بدهی استفاده می کردند.

همچنین دانشمند هندی “براهما گوپتا” در سال ۶۲۸ در کتاب خود از اعداد منفی ریاضی برای نمایش ریشه های معادله ی درجه دو استفاده می کند. فرمولی که او بکار برد امروزه نیز در ریاضیات بکار می رود. اکثر اروپاییان تا قرن هفدهم در برابر استفاده از اعداد منفی  در ریاضی مقاومت می کردند و جواب های منفی معادلات را نادیده می گرفتند و آن را بی معنی تعبیر می کردند. (هرچند “فیبوناچی” در قرن سیزدهم جواب های منفی را در مساله های مالی پذیرفته می دانست و آن را به عنوان بدهی تعبیر می کرد).

در قرن هجدهم “رنه دکارت” از اعداد منفی در نمایش “دستگاه مختصات دکارتی” استفاده کرد.

هاله علیپور

مطالب مرتبط

دیدگاهها

نظر:

هفت + 18 =